TABLE OF CONTENTS

CHAPTERS

1. Introduction	l
2. Hardware Configuration	5
3. Digital Input/Output Port Setting	
4. Diagnostic under Windows	13
5. Programming under Windows and Linux	13
APPENDICES	
A. Warranty Information	14
B. Data Sheet	
C. External Power Installation	

SMARTLAB

USB 8 CHANNELS RELAY OUTPUT 8 CHANNELS PHOTO ISOLATOR INPUT BOARD

OPERATION MANUAL

CHAPTER 1

INTRODUCTION

USB 8 channels relay output / photo isolator input board provides photo couple digital input and relay output channels. The photo isolator input part provides 8 photo couple digital input channels, which allow the input signals to be completely floated and prevent the ground loop. The relay output part provides 8 relays to drive 8 different output channels. Each relay channel can be used to control ON/ OFF of external devices, to drive external power relays, to activate alarms... etc.

The USB 8 channels relay output / photo isolator input board also provide 16 digital input/output channels, which allows connect to external devices for applications of digital I/O.

The USB 8 channels relay output / photo isolator input board provides Plug and Play (PnP) features, it is a programmable I/O interface board for PC/486, Pentium, or compatibles. The on board high speed 8051 uC provides USB functions run at 12Mbps full speed or 1.5Mbps low speed.

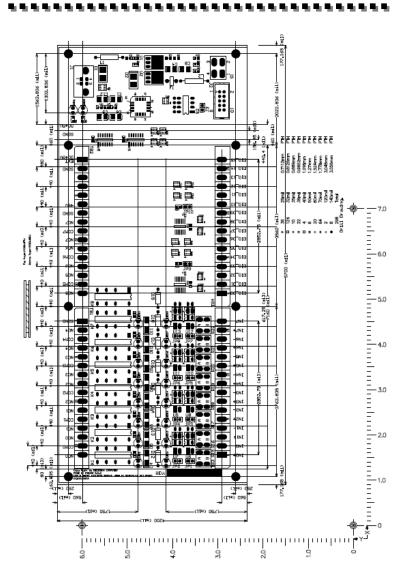
The features of USB 8 channels relay output / photo isolator input board are:

- USB2.0 with Plug and Play (PnP) features.
- High speed 8051 uC core.
- Support USB ID selection to identify USB device.
- Support 8 photo couple input channels, 8 relay output channels and 16 digital input/output channels.

• Allow the photo input signals to be completely floated and prevent the ground loops.

- 16 LED correspond to 8 input and 8 output ports activation status.
- By using PC817 photo couple chips.
- Power supplied from External DC +5V.
- For photo couple input channel, the isolation voltage is 5000V, maximum load voltage is 30V, maximum input current is 50mA forward.
- Activation voltage of photo input:

When short jumpers (input range from 0 to 20V DC)
0 to 3.3V inactive
4.5 to 20V active
When open jumpers (input range from 0 to 30V DC)
0 to 17.6V inactive
18 to 30V active


- Maximum contact rating is 220V/AC, 120V/DC 1AMP, minimum response time is 1ms, maximum contact resistance is 0.1 OHM.
- Each digital I/O provides voltage range from 0V to 3.5V, where 0 to 0.4V is OFF and 2.8V to 3.4V is ON.
- Suitable for Linux, MS/Windows ... etc.
- Operating temperature range from 0 to 55 °C.
- Relative humidity rage from 0 to 90%.

PACKAGE CONTENTS:

- SMARTLAB USB 8 channels relay output / photo isolator input board
- USB cable.
- Decision Studio and User's manual CD.
- Two Different Connecter Types can be selected: Standard: European P.C.B type terminal blocks Professional: Pluggable terminal blocks

Optional

- Extension board with DB9: RS232 or RS422/485
- PCB Carrier

- 3 -

CHAPTER 2

HARDWARE CONFIGURATION

Before you use the USB 8 channels relay output / 8 channels photo couple input board, please ensure that the jumpers and switches setting. The proper jumper and switches settings for the 8 channels relay output / 8 channels photo couple input adapter are described in the following.

2.1 Switch Settings

1. S1 Reset

The S1 switch is used to reset 8051, the signal assignments are shown in the following.

Pin	Signals
3,4	Reset SW+
1,2	Reset SW-

2. S2 USB ID

The S2 switch is used to identify USB board ID. Please set different board ID to each board (do not duplicate board ID setting).

1	2	3	4	Card ID
ON	ON	ON	ON	
OFF	ON	ON	ON	14
ON	OFF	ON	ON	13
OFF	OFF	ON	ON	12
ON	ON	OFF	ON	11
OFF	ON	OFF	ON	10
ON	OFF	OFF	ON	9
OFF	OFF	OFF	ON	8
ON	ON	ON	OFF	7
OFF	ON	ON	OFF	6
ON	OFF	ON	OFF	5
OFF	OFF	ON	OFF	4
ON	ON	OFF	OFF	3
OFF	ON	OFF	OFF	2
ON	OFF	OFF	OFF	1
OFF	OFF	OFF	OFF	0

3. Down load revised firmware

When the S2 switch is set to ON ON ON ON status, means down load revised firmware. please follow the steps shown in the following:

- 1. Set S2 to ON ON ON ON.
- 2. Run USBBootloader program to down load revised firmware.

2.2 Jumper Settings

1. Input Voltage Range Selection (JP1 to JP8)

JP1 to JP8 are used to select input voltage range. The JP1 is used to select photo couple input channel 0, and JP2 is used to select photo couple input channel 1 ... etc. When short the jumper, the input voltage range from 0 to 20V, and the active voltage form 4.5 to 20V. When open the jumper, the input voltage range from 0 to 30V, and the active voltage from 18 to 30V.

Jumper	Input Voltage	Inactive Voltage	Active Voltage
open	0 to 30V	0 to 17.6V	18 to 30V
short	0 to 20V	0 to 3.3V	4.5 to 20V

2. Digital Input/Output Selection (JP9 to JP10)

JP9 and JP10 are used to select input/output of digital I/O. When short JP9 means select input mode for D0 to D7, otherwise open JP9 means select output mode for D0 to D7. When short JP10 means select input mode for D8 to D15, otherwise open JP10 means select output mode for D8 to D15.

2.3 USB Connector

1. USB Connector

The USB connector is connected to computer USB port by using USB cable.

B

<u>(122 ii)</u>

) MEN

2.4 LED Status

1. LED1

The LED1 is an indicator to show the power is supplied normally.

2. LED2

The LED2 is an indicator to warning the USB link status. When it lights, it means USB connection works normally, otherwise it is fail.

2.5 Connector and Jumper for Serial Communication

If there isn't a 2x5 header on the board, it means this version doesn't support for serial communication.

1. The connector of serial communication(J2)

To use RS422/RS485/RS232, please connect J2 to extension board by 10 pins flat cable. (Optional)

2. Enable Serial Port (J3)

J3 is used enable serial port communication, when short the J3, means enable serial port, otherwise, when open the J3, the serial port communication is disable.

2.6 Connector Assignments

The photo isolator input signal and relay output signal pin assignments are shown in the below.

1. Input Signal Assignments

Pin	Signal	Description
1	IN0+	Opto-isolator Ch. 00 + Input
2	INO-	Opto-isolator Ch. 00 - Input
3	IN1+	Opto-isolator Ch. 01 + Input
4	IN1-	Opto-isolator Ch. 01 - Input
5	IN2+	Opto-isolator Ch. 02 + Input
6	IN2-	Opto-isolator Ch. 02 - Input
7	IN3+	Opto-isolator Ch. 03 + Input
8	IN3-	Opto-isolator Ch. 03 - Input
9	IN4+	Opto-isolator Ch. 04 + Input
10	IN4-	Opto-isolator Ch. 04 - Input
11	IN5+	Opto-isolator Ch. 05 + Input
12	IN5-	Opto-isolator Ch. 05 - Input
13	IN6+	Opto-isolator Ch. 06 + Input
14	IN6-	Opto-isolator Ch. 06 - Input
15	IN7+	Opto-isolator Ch. 07 + Input
16	IN7-	Opto-isolator Ch. 07 - Input

2. Output Signal Assignments

Pin	Signal	Description
1	NC0	Relay Ch. 00 - Output

2	COM0	Relay Ch. 00 - Output
3	NO0	Relay Ch. 00 - Output
4	NC1	Relay Ch. 01 - Output
5	COM1	Relay Ch. 01 - Output
6	NO1	Relay Ch. 01 - Output
7	NC2	Relay Ch. 02 - Output
8	COM2	Relay Ch. 02 - Output
9	NO2	Relay Ch. 02 - Output
10	NC3	Relay Ch. 03 - Output
11	COM3	Relay Ch. 03 - Output
12	NO3	Relay Ch. 03 - Output
13	NC4	Relay Ch. 04 - Output
14	COM4	Relay Ch. 04 - Output
15	NO4	Relay Ch. 04 - Output
16	SGND	Signal Ground

Pin	Signal	Description
1	NC5	Relay Ch. 05 - Output
2	COM5	Relay Ch. 05 - Output
3	NO5	Relay Ch. 05 - Output
4	NC6	Relay Ch. 06 - Output
5	COM6	Relay Ch. 06 - Output
6	NO6	Relay Ch. 06 - Output
7	NC7	Relay Ch. 07 - Output
8	COM7	Relay Ch. 07 - Output
9	NO7	Relay Ch. 07 – Output
10	SGND	Signal Ground
11	+5V	+5V
12		
13		
14		
15	SGND	Signal Ground
16	EXT +5V	External DC +5V 3A Power In

Pin	Signal	Description
1	DIO_00	Digital input/output ch. 00
2	DIO_01	Digital input/output ch. 01
3	DIO_02	Digital input/output ch. 02
4	DIO_03	Digital input/output ch. 03
5	DIO_04	Digital input/output ch. 04
6	DIO_05	Digital input/output ch. 05
7	DIO_06	Digital input/output ch. 06
8	DIO_07	Digital input/output ch. 07
9	DIO_08	Digital input/output ch. 08
10	DIO_09	Digital input/output ch. 09
11	DIO_10	Digital input/output ch. 10
12	DIO_11	Digital input/output ch. 11
13	DIO_12	Digital input/output ch. 12
14	DIO_13	Digital input/output ch. 13
15	DIO_14	Digital input/output ch. 14
16	DIO_15	Digital input/output ch. 15

CHAPTER 3 Digital Input / Output Port Setting

AUSB8PR provide 16 digital channels (TTL level) and allow user to set them as 8 channel input port or 8 channel output port. Default setting is both of the ports as input

When user needs to change the port setting, it must be set in both software and hardware. In software setting, USB Init Tool.exe is a setting tool for USB series products. User can find it in Decision Studio CD with its manual. In hardware setting, JP9 and JP10 on the board are used to select input/output of digital I/O. When shorting JP9 means setting DIO_00 to DIO_07 as input mode, otherwise opening JP9 means setting DIO_00 to DIO_07 as output mode. When shorting JP10 means setting DIO_08 to DIO_15 as input mode, otherwise opening JP10 means setting DIO_08 to DIO_15 as output mode.

DIO Port1(DIO	D_00~DIO_07)	DIO Port2 (DIO_08~DIO_15)		
as Input	as Output	as Input	as Output	
Short JP9	Open JP9	Short JP10	Open JP10	
	00		00	
JP9	JP9	JP10	JP10	

After setting by the software, the setting of JP9 and JP10 must match the setting, or it could be dangerous. <u>Especially in setting ports as output, it must open the jump on the board, or it may cause main IC damaged.</u> Please use this function extremely carefully.

..........

CHAPTER 4

DIAGNOSTIC UNDER WINDOWS

USB Test Program.exe is a diagnostic program to test your USB devices under Windows/XP.

User can get USB Test Program.exe programs from Decision Studio CD.

CHAPTER 5

SOFTWARE PROGRAMMING UNDER WINDOWS AND LINUX

Under Windows, we provide function library and dll file for users to program the device in supported language. You can find manual "USBDII_Manual.pdf" and demo code in VB/VC/Delphi from Decision Studio CD.

Under Linux, we provide C source to allow user directly to access device. You can find manual and example in "dcihid-0.5.2.tgz".

APPENDIX A

WARRANTY INFORMATION

A.1 Copyright

Copyright DECISION COMPUTER INTERNATIONAL CO., LTD./DECISION GROUP INC. All rights reserved. No part of SmartLab software and manual may be produced, transmitted, transcribed, or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual, or otherwise, without the prior written permission of DECISION COMPUTER INTERNATIONAL CO., LTD./DECISION GROUP INC.

Each piece of SmartLab package permits user to use SmartLab only on a single computer, a registered user may use he program on a different computer, but may not use the program on more than one computer at the same time.

Corporate licensing agreements allow duplication and distribution of specific number of copies within the licensed institution. Duplication of multiple copies is not allowed except through execution of a licensing agreement. Welcome call for details.

A.2 Warranty Information

SmartLab warrants that for a period of one year from the date of purchase (unless otherwise specified in the warranty card) that the goods supplied will perform according to the specifications defined in the user manual. Furthermore that the SmartLab product will be supplied free from defects

Out / Photo In Board

in materials and workmanship and be fully functional under normal usage.

In the event of the failure of a SmartLab product within the specified warranty period, SmartLab will, at its option, replace or repair the item at no additional charge. This limited warranty does not cover damage resulting from incorrect use, electrical interference, accident, or modification of the product.

All goods returned for warranty repair must have the serial number intact. Goods without serial numbers attached will not be covered by the warranty.

The purchaser must pay transportation costs for goods returned. Repaired goods will be dispatched at the expense of SmartLab.

To ensure that your SmartLab product is covered by the warranty provisions, it is necessary that you return the Warranty card.

Under this Limited Warranty, SmartLab's obligations will be limited to repair or replacement only, of goods found to be defective a specified above during the warranty period. SmartLab is not liable to the purchaser for any damages or losses of any kind, through the use of, or inability to use, the SmartLab product. SmartLab reserves the right to determine what constitutes warranty repair or replacement.

Return Authorization: It is necessary that any returned goods are clearly marked with an RA number that has been issued by SmartLab. Goods returned without this authorization will not be attended to.

APPENDIX B

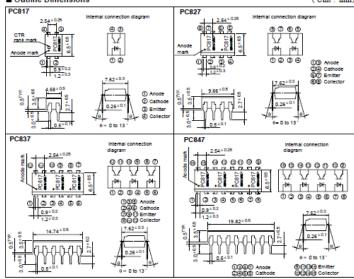
DATA SHEET

SHARP

PC817 Series

High Density Mounting Type Photocoupler

- Lead forming type (I type) and taping reel type (P type) are also available. (PC817I/PC817P)
- •• TUV (VDE0884) approved type is also available as an option.


■ Features

- 1. Current transfer ratio
- (CTR: MIN. 50% at I = 5mA, Vc=5V)
- 2. High isolation voltage between input and output (Viso: 5 000V ms)
- 3. Compact dual-in-line package
 - PC817: 1-channel type PC827: 2-channel type
- PC837: 3-channel type
- PC847: 4-channel type 4. Recognized by UL, file No. E64380

- Applications
- 1. Computer terminals
- 2. System appliances, measuring instruments
- 3. Registers, copiers, automatic vending machines
- 4. Electric home appliances, such as fan heaters, etc.
- 5. Signal transmission between circuits of different potentials and impedances

■ Outline Dimensions

(Unit: mm)

in the absence of confirmation by device specification sheets. SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in co

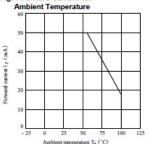
USB 8 Channel Relay Out / Photo In Board

SHARP PC817 Series

■ Abso	lute Maximum Ratings		(Ta= 25°C)
	Parameter	Symbol	Rating	Unit
	Forward current	$I_{\rm F}$	50	mA
Input	*Peak forward current	I_{PM}	1	A
	Reverse voltage	V _R	6	V
	Power dissipation	P	70	mW
	Collector-emitter voltage	V _{cro}	35	V
	Emitter-collector voltage	V _{ECO}	6	V
Output	Collector current	I_c	50	mA
	Collector power dissipation	Pc	150	mW
	Total power dissipation	Ptot	200	mW
	**Isolation voltage	Viao	5 000	Vms
	Operating temperature	T opr	- 30 to + 100	.c
	Storage temperature	T atg	- 55 to + 125	.c
	*3Soldering temperature	Tast	260	.c

^{*1} Pulse width =100 us, Duty ratio: 0.001

■ Electro-optical Characteristics


(Ta = 25°C)

	Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Forward voltage Peak forward voltage Reverse current		V _F	$I_y = 20 \text{mA}$	-	1.2	1.4	V
			V _{IM}	$I_{PM} = 0.5A$	-		3.0	V
Input			I_R	$V_R = 4V$	- 2	-	10	μA
	Terminal capacitance		C,	V= 0, f= 1kHz	-	30	250	pF
Output	Collector dark cur	rent	Icro	V _{CR} = 20V	1	12	10 - 7	A
	**Current transfer ratio		CTR	$I_F = 5\text{mA}$, $V_{CR} = 5V$	50	-	600	%
	Collector-emitter saturation voltage		V _{CE(set)}	$I_{F} = 20 \text{mA}, I_{C} = 1 \text{mA}$	7 50	0.1	0.2	V
Transfer	Isolation resistance		R _{BO}	DC500V, 40 to 60% RH	5 x 10 m	1011	-27	Ω
charac-	Floating capacitance		Cr	V= 0, f= 1MHz	-	0.6	1.0	pF
teristics	Cut-off frequency		f _c	V _{CE} = 5V, I _C = 2mA, R _L = 100 Ω, - 3dB	-	80	2 50	kHz
	D	_ Rise time	tr	TI - 2TI I - 2-1 D - 100 C	- 2	4	18	μs
	Response time Fall time		te	$V_{CE} = 2V$, $I_{C} = 2mA$, $R_{L} = 100 \Omega$	-	3	18	LLS

^{*4} Classification table of current transfer ratio is shown below.

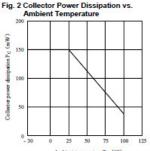

Model No.	Rank mark	CTR (%)	
PC817A	A	80 to 160	
PC817B	В	130 to 260	
PC817C	С	200 to 400	
PC817D	D	300 to 600	
PC8 • 7AB	A or B	80 to 260	
PC8●7BC	B or C	130 to 400	
PC8 • 7CD	C or D	200 to 600	
PC8 • 7AC	A, B or C	80 to 400	
PC8●7BD	B, C or D	130 to 600	
PC8 • 7AD	A, B, C or D	80 to 600	
PC8 * 7	A, B, C, D or No mark	50 to 600	

Fig. 1 Forward Current vs.

SHARP

PC817 Series

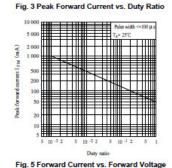
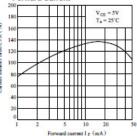



Fig. 4 Current Transfer Ratio vs.

Forward Current

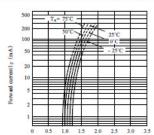
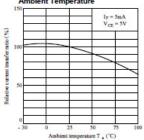
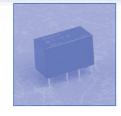



Fig. 6 Collector Current vs.

Collector-emitter Voltage Pc(MAX.) Collector-emitter voltage V CE (V)

Fig. 7 Relative Current Transfer Ratio vs. Ambient Temperature

^{*2 40} to 60% RH, AC for 1 minute


^{*3} For 10 seconds

Ambient Temperature

SHARP

PC817 Series

- **FEATURES** · 2 Form C Contact
- · DIL Pitch Terminals
- · High Reliability Bifurcated Contact
- · Conforms to FCC Part 68 1500V Surge and Dielectric Strength 1000VAC
- · Fully sealed
- UL File No. E147052

Ambient temperature T , (°C)

Fig. 8 Collector-emitter Saturation Voltage vs.

 $I_{\rm F}=20{\rm mA}$

 $I_C = 1mA$

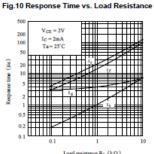
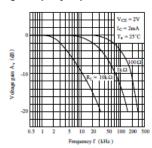



Fig.11 Frequency Response

Fig. 9 Collector Dark Current vs.

Ambient Temperature

Ambient temperature T, (°C)

Test Circuit for Response Time

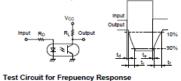
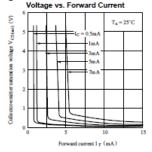
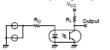
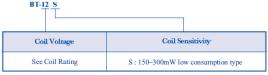




Fig.12 Collector-emitter Saturation

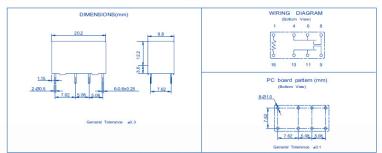


Please refer to the chapter "Precautions for Use"

■COIL RATING (at 20 °C)

Nominal Voltage (VDC)	Coil Resistance (Ω±10%)	Nominal Current (mA)	Pick-Up Voltage (VDC)	Drop-Out Voltage (VDC)	Maximum Allowable Voltage(VDC)	Power Consumption (mW)
5	167	30	3.5	0.5	6.0	150
6	240	25	4.2	0.6	7.2	150
9	540	16.6	6.3	0.9	10.8	150
12	960	12.5	8.4	1.2	14.4	150
24	2880	8.3	16.8	2.4	28.8	200
48	7680	6.25	33.6	4.8	57.6	300

■ ORDERING INFORMATION


^{*}Nil: Power Consumption up to 560mW available upon request

■ SPECIFICATIONS

Model No.		BT		
Contact Arrangement		2 Form C		
Contact Type		Bifurcated		
Contact Material		AgPd+Au Clad		
Contact Resistance		Max. 60mΩ (initial)		
Contact Rating Max. Switching Voltage		220VAC, 150VDC		
(at Resistive Load)	Max. Switching Current	2A		
	Max. Switching Power	30W(DC), 50VA(AC)		
	Rated Load	1.25A 24VDC 0.5A 100VAC		
Dielectric Strength				
Between Coil & Contacts		1000VAC(1 minute)		
Between Contacts		1000VAC(1 minute)		
Surge Strength		1500V		
Operate Time		Max. 6m Sec		
Release Time		Max. 4m Sec		
Ambient Temperature		-30°C~+80 °C		
Insulation Resistance		Min. 1000MΩ at 500VDC		
Vibration Resistance		1.5mm D.A. 10-55HZ		
Shock	Functional	10G		
	Destruction	100G		
Mechanical Life		2 x 10 ⁷ operations (at no load)		
Electrical Life (Resistive Load)		2 x 106 operations at 1mA 20m VAC		
		2 x 106 operations at 20mA 20 VDC		
		1 x 10 ⁵ operations at 1.25A 24 VDC		
		1 x 10 ⁵ operations at 0.5A 100 VAC		
Weight		Approx. 6g		

USB 8 Channel Relay

Out / Photo In Board

APPENDIX C

External Power Installation

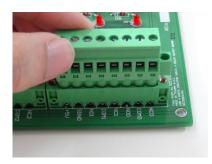
**Optional for Decision Group USB I/O series of items ** The materials of the external power for Decision Group USB I/O series items are customer-self-supplied or optional purchase, they are not covered in the standard package of Decision Group USB I/O series items.

1. The Materials of the external power (customer*self-supplied*)

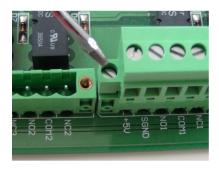
* 5V / 1A AC adapter (Power plug type is subject to the different varieties in different country.).

* AC power cord

2. Terminal blocks built-in on Decision Group USB I/O series of Items:


e.g. PCB pluggable terminal blocks. (for PRO type only)

3. External Power Installation procedure:

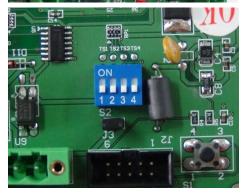


To tight / loose the terminal with a minus screwdriver.

USB 8 Channel Relay Out / Photo In Board

Plug the terminal blocks into the socket. (PRO type only)

Fasten both sides of the screws (PRO type only)



black cord to the SGND and the red cord to the EXT DC+5V., as well as the signals cords

Attach the

Connect your device to the computer with a USB cable

To confirm all the switches and jumper setting are correct in compliance